(TLE )Basic Electricity

Electric circuits

A basic electric circuit. The voltage source V on the left drives a current I around the circuit, delivering electrical energy into the resistor R. From the resistor, the current returns to the source, completing the circuit. An electric circuit is an interconnection of electric components such that electric charge is made to flow along a closed path (a circuit), usually to perform some useful task. The components in an electric circuit can take many forms, which can include elements such as resistors, capacitors, switches, transformers and electronics.


Circuits

Electric power, like mechanical power, is represented by the letter P in electrical equations. The term wattage is used colloquially to mean "electric power in watts."


Direct current

In direct current resistive circuits, electrical power is calculated using Joule's law:

where P is the electric power, V the potential difference, and I the electric current.
In the case of resistive (Ohmic, or linear) loads, Joule's law can be combined with Ohm's law (I = V/R) to produce alternative expressions for the dissipated power:
where R is the electrical resistance.

Alternating current

In alternating current circuits, energy storage elements such as inductance and capacitance may result in periodic reversals of the direction of energy flow. The portion of power flow that, averaged over a complete cycle of the AC waveform, results in net transfer of energy in one direction is known as real power (also referred to as active power). That portion of power flow due to stored energy, that returns to the source in each cycle, is known as reactive power.


SERIES CIRCUITS

A series circuit is the simplest circuit. The conductors, control and protection devices, loads, and power source are connected with only one path to ground for current flow. The resistance of each device can be different. The same amount of current will flow through each. The voltage across each will be different. If the path is broken, no current flows and no part of the circuit works. Christmas tree lights are a good example; when one light goes out the entire string stops working.

A Series Circuit has only one path to ground, so electrons must go through each component to get back to ground. All loads are placed in series.
Therefore:
1. An open in the circuit will disable the entire circuit.
2. The voltage divides (shared) between the loads.
3. The current flow is the same throughout the circuit.
4. The resistance of each load can be different.

PARALLEL CIRCUIT

A parallel circuit has more than one path for current flow. The same voltage is applied across each branch. If the load resistance in each branch is the same, the current in each branch will be the same. If the load resistance in each branch is different, the current in each branch will be different. If one branch is broken, current will continue flowing to the other branches.

A Parallel Circuit has multiple paths or branches to ground. Therefore:
1. In the event of an open in the circuit in one of the branches, current will continue to flow through the remaining.
2. Each branch receives source voltage.
3. Current flow through each branch can be different.
4. The resistance of each branch can be different.

SERIES PARALLEL CIRCUIT

A series-parallel circuit has some components in series and others in parallel. The power source and control or protection devices are usually in series; the loads are usually in parallel. The same current flows in the series portion, different currents in the parallel portion. The same voltage is applied to parallel devices, different voltages to series devices. If the series portion is broken, current stops flowing in the entire circuit. If a parallel branch is broken, current continues flowing in the series portion and the remaining branches.

  • Digg
  • Del.icio.us
  • StumbleUpon
  • Reddit
  • RSS

0 comments:

Post a Comment